
Causality and the nature of information

Klaas Wynne*

Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK

Received 28 February 2002; received in revised form 23 May 2002; accepted 28 May 2002

Abstract

Superluminal propagation of electromagnetic radiation and photon tunnelling have been studied by a variety of

direct and indirect techniques. Especially the use of femtosecond terahertz pulses, whose electric field can be measured

directly, has resulted in the (re)discovery of a number of effects in which light propagates over small distances faster

than the speed of light in vacuum. Naturally, this brings up the question whether information can be exchanged su-

perluminally. It has been shown in nearly all cases studied that the principle of causality applies to the underlying

physical processes. It has been argued, however, that the principle of causality might have no bearing on the question of

superluminal information transfer. It will be shown here that all the confusion stems from a vague definition of the

concept of information and from ignoring noise. Once the concept of information (and noise) has been defined

properly, it can be shown that if the principle of causality applies then useful superluminal information exchange is

strictly prohibited. � 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

One of the problems has to do with the speed of
light and the difficulties involved in trying to ex-
ceed it. You can’t. Nothing travels faster than
the speed of light with the possible exception
of bad news, which obeys its own special laws
[1].

All sorts of ‘‘things’’ can travel with velocities
exceeding the speed of light in vacuum without
necessarily violating special relativity or causality.
A problem only arises in the case of superluminal

propagation of information. Many experi-
ments have been performed this century that
demonstrate superluminal propagation of signals 1

encoded on electromagnetic waves [2,3]. Superlu-
minal effects generally occur when (electromag-
netic) waves are forced through a structure or
device in which the waves are evanescent. The
wavevector of an evanescent field has one or more
imaginary elements resulting in a purely expo-
nential decay (or rise) of the field amplitude with
distance in one or more spatial directions. The
quantum-mechanical equivalent of evanescent-
wave propagation is tunnelling in which the wave
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function decays inside a classically forbidden bar-
rier [2,4]. Superluminal propagation has been ob-
served in frustrated total internal reflection, [5–10]
phase-conjugating mirrors, [11] Bessel beams,
[12,13] anomalous dispersion in absorbing and
amplifying media, [14–19] dielectric mirrors
and photonic band gaps, [20] diffraction, [21] and
waveguides below the cut-off frequency [22–26]. It
is sometimes argued that superluminal propaga-
tion of signals does not violate causality simply
because the transmitted intensity is always lower
than the intensity that would have been transmit-
ted in vacuum [20,27,28]. This assertion is incor-
rect as superluminal propagation also occurs in
amplifying media [29–32].

Understanding superluminal-propagation phe-
nomena becomes ever more important as evanes-
cent-waves are a crucial component of many new
techniques and devices. For example, evanescent
electromagnetic waves are central to many surface-
sensitive spectroscopies and the various incarna-
tions of near-field and tunnel microscopy [33].
Evanescent electron waves occur in sub-microme-
ter semiconductor devices [34]. The last few years
there has been a huge increase in the development
and use of terahertz pulses: Electromagnetic pulses
typically containing one or only a few cycles of the
field, with a centre frequency of about 1 THz,
whose electric field can be measured directly using
electro-optic sampling with a delayed femtosecond
visible pulse [24–26]. Because the coherent detec-
tion of THz pulses allows the observation of
temporal shifts much less than a pulse width, su-
perluminal phenomena are more frequently ob-
served, for example, in the Gouy phase shift
[35,36] and pump-probe experiments [37].

Based on a series of experiments [22,23] on the
propagation of microwaves through waveguides
below cut-off, it has been argued that information
may travel through a waveguide superluminally
thereby, in effect, violating the principle of causal-
ity. In an infamous unpublished [38] experiment,
Mozart’s 40th symphony has been transmitted
through a barrier at 4.7 c. Others have argued [2,39]
that, as the waveguide obeys the (mathematical)
principle of causality, information cannot, under
any circumstance, be transmitted superluminally.
The counter argument has been that, although the

waveguide may obey the principle of causality, [40]
‘‘physically-realistic signals’’ are ‘‘bandwidth lim-
ited’’ and therefore the principle of causality does
not apply. [38,40–42] These at times acrimonious
discussions have not helped to clarify the issues. It
appears that most of the confusion has been gen-
erated by an inadequate definition of ‘‘informa-
tion’’. The concept of information has been very
well defined in information theory [43] and can be
linked to entropy in thermodynamics [44]. Using
the principles of information theory, it will be
shown in this paper that useful superluminal
transfer of information is strictly impossible if the
principle of causality applies. The main reason for
this result is that information is spread out over
space and time (i.e., it is not contained in a point)
allowing for considerable fuzziness in the definition
of arrival time. At the same time, (thermal) noise
determines an interval of definition of information
and it will be shown that information cannot es-
cape from this interval. It will be found that these
conclusions apply whether the signal pulse is
bandwidth limited or not.

2. (Superluminal) propagation of light

The propagation of light through dispersive
media has been described in detail in many places
[45,46] and therefore a much-abbreviated version
will be presented here. It will be assumed that all
propagation phenomena relevant to the current
discussion can be adequately described with plane
waves propagating along the z-axis (Note that this
assumption is not valid for frustrated total internal
reflection). When a wave at frequency x propa-
gates through a certain length of material or some
device, it will accumulate phase. If the Fourier
transform of the field at the input is given by
~EEð0;xÞ, the field at the output is given by

~EEðz;xÞ ¼ ~EEð0;xÞ expðiuðz;xÞÞ; ð1Þ
where u is the accumulated phase. In the case of
propagation through a dispersive medium, the
accumulated phase is xznðxÞ=c, where nðxÞ is the
frequency-dependent refractive index. In the case
of propagation through a more complicated
structure such as a waveguide (see below), it can be
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useful to define an effective refractive index. In
order to understand what effect the accumulated
phase has on the propagation of a short pulse, it is
common to expand the phase as a Taylor series
around the carrier frequency of the electromag-
netic pulse as

uðxÞ ¼ u0 þ u1ðx � x0Þ þ
1

2
u2ðx � x0Þ2 þ � � � ;

ð2Þ
where

um ¼ omuðxÞ=oxmjx¼x0
: ð3Þ

In this expansion, su ¼ u0=x0 is the phase delay,
neff ¼ u0c=x0z is the effective refractive index,
sg ¼ u1 is the group delay and u2 is the group-
velocity dispersion [45]. The phase delay (and the
corresponding phase velocity) is the delay experi-
enced by the crests of the waves on traversing a
certain distance. The group delay (and the corre-
sponding group velocity) is the delay experienced
by the envelope of the pulse. The group-velocity
dispersion and all higher-order terms give rise to
broadening of the envelope of the pulse.

In Appendix A, a detailed description is given
of propagation through waveguides including ex-
pressions for the phase delay, group delay and
group-velocity dispersion. The expression for the
phase accumulated by an electromagnetic wave

making a single pass through a waveguide of
length L is (ignoring end effects)

uðxÞ ¼ xcLc�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=xcÞ2 � 1

q
: ð4Þ

It can be seen from this expression that at fre-
quencies below the critical frequency xc, the ac-
cumulated phase is purely imaginary, implying
that both the phase delay and group delay are
imaginary. As the real part of these delays is zero,
this means that the pulse propagates through the
waveguide with zero delay (while suffering con-
siderable attenuation). The group-velocity disper-
sion is also imaginary and small, which means that
the pulse narrows slightly while traversing the
waveguide. These conclusions still hold true when
multiple reflections inside the waveguide and end
effects are taken into consideration. However, two
new features are introduced: The transmission at
zero frequency becomes zero and the effective re-
fractive index becomes negative.

Fig. 1 shows calculated transmission and effec-
tive refractive-index spectra for a waveguide with
the effect of multiple reflections included. As the
effective refractive index below the cut-off fre-
quency is negative, this implies that electromag-
netic waves emerge from the waveguide before
entering it. Interestingly, this effect is entirely due
to the phase shifts incurred by reflection off the

(a) (b)

Fig. 1. Theoretical calculation of propagation of the lowest-order TE mode through a cylindrical metal waveguide with a diameter of

200 lm (cut-off frequency 0.88 THz or 29 cm�1Þ using Eq. (28). (a) Field-transmission spectra for waveguides with lengths L ¼ 0:1, 1,

and 10 mm with multiple reflections inside the waveguide included. Note that the transmission is zero at zero frequency. The inset

shows the effective refractive index for the same waveguides. (b) Group velocity calculated from the effective refractive index in (a).
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boundary between vacuum and the waveguide.
This may seem like an ‘‘unfair’’ way of advancing
a wave but it can nonetheless result in the obser-
vation of the peak of a pulse emerging from a
waveguide before entering it [24]. Similar temporal
advances due to phase shifts at a boundary have
been seen in recent pump-probe studies [37]. It can
be seen in Fig. 1 that the group velocity exceeds the
vacuum speed of light for sufficiently long wave-
guides. When the length of the waveguide is on the
same order as the diameter, edge effects make the
group-velocity subluminal. In the longer wave-
guides, one can observe oscillations in the trans-
mission due to Fabry–Perot effects of the
non-evanescent waves.

3. Causality

The calculations presented here and many ex-
periments [22–24] have established that electro-
magnetic waves can propagate superluminally
through a waveguide below the cut-off frequency.
This is not necessarily in conflict with special rel-
ativity theory. Only if information were to travel
with superluminal velocity would there be an in-
consistency with special relativity. The question
that has to be answered is therefore, with what
speed does information travel through the wave-
guide? Clearly, this is not the phase velocity. The
phase velocity is the propagation velocity of the
crests of the electromagnetic wave or equivalently,
the velocity of the monochromatic components of
a pulse. No information can be encoded in a
monochromatic wave or, to be more precise, the
information encoded in a monochromatic wave is
entirely delocalised over time and space. There-
fore, the negative effective refractive index shown
in Fig. 1 has no direct bearing on the signal ve-
locity and does not indicate a non-causal effect.
Fig. 1 also shows that the group velocity can ex-
ceed the speed of light, the effect being most pro-
nounced for long waveguides where end effects are
minimal. If the group velocity were equal to the
information velocity, this would suggest a viola-
tion of some form of causality. In this respect, it is
interesting to consider the velocity with which
electromagnetic energy travels through the wave-

guide. If an electromagnetic pulse at the input of a
dispersive medium has instantaneous intensity
IðtÞ / jEðtÞj2 then at the output, it will have an
intensity proportional to Iðt � sgÞ if the group-
velocity dispersion and higher-order terms are ig-
nored. The average arrival time of the energy is
determined by the centroid delay as

sc ¼
Z 1

�1
dt t Iðt; zÞ=

Z 1

�1
dt Iðt; zÞ: ð5Þ

This expression is valid even if the slowly varying
amplitude approximation [47] is not. Thus, at the
exit of the dispersive medium (assuming IðtÞ to be
normalised)

sc ¼
Z 1

�1
dt t Iðt � sgÞ ¼

Z 1

�1
dt t IðtÞ þ sg: ð6Þ

As the first term in Eq. (6) is a constant offset, this
shows that the centroid-delay difference (free space
vs. dispersive medium) equals the group-delay
difference in the approximation that the group-
velocity and higher-order dispersion terms can be
ignored. In the calculations that have been per-
formed (see below), this approximation appears to
be quite good. Thus, one can conclude that the
energy in the pulse can also travel superluminally
through the waveguide. This might suggest that
causality may be violated. In an experiment using
beams of correlated photons in which one beam
travels through a photonic band gap, it was shown
that single-photon wavepackets can also travel
with superluminal speed [48].

The above results are all very worrying. Is it
possible to transmit information superluminally
and hence, in some inertial frames, to receive a
signal before it has been sent? Perhaps the answer
lies in an examination of the principle of causality
[16]. If the response of a system with length z is
causally related to the input to the system, the
output electric field must be related to the input
field by

Eoutðz; tÞ ¼
Z 1

�1
dsEinð0; t � sÞrðs � z=cÞ; ð7Þ

where the response function rðt � z=cÞ is zero for
t < z=c. Any value of the response function at
times t < z=c would violate causality in some Lo-
rentz frames (a transmitter receiving its own
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message before sending it). In the case of a
waveguide, the time-response function is found
from the Fourier transform of the transmission
function Eq. (28). The effective index of the
waveguide tends to unity as the absolute value of
the complex frequency tends to infinity. Therefore,
the Fourier transform can be performed by con-
tour integration by closing the contour in the
upper half of the complex-frequency plane if
t � z=c < 0. Therefore, the waveguide response is
causal if there are no poles in the upper-half plane
of the integrand [46,49]. It has not been possible to
find an analytical expression for the position of
the poles but a numerical search only resulted in
an infinite series of poles in the lower half of the
complex-frequency plane. As a further causality
proof, the Fourier transform of Eq. (28) has been
performed numerically. The first response of the
system is a Dirac delta function arriving at t ¼ z=c.
Thus, electromagnetic-wave transmission through
a waveguide is causal even when one includes the
effect of multiple reflections of evanescent waves
each travelling at infinite speed. Interestingly, it is
assumed that the principle of causality Eq. (7)
applies to all physically realistic systems al-
though there is no proof that this will always be
the case.

The principle of causality has been used previ-
ously [16,39,44] as an argument to define infor-

mation as a point of non-analyticity. From that
point of view, the principle of causality is proof
that superluminal communication is impossible. In
some cases, the response function has such a form
that it appears as if information is travelling su-
perluminally. However, the tunnelling device in
effect performs an extrapolation into the future
[2,31,50]. This has been demonstrated beautifully
in experiments using resonant amplifiers in which
the peak of the output pulse may leave the circuit
before the peak of the input pulse arrives at the
input port [16,51] without violating causality [16].
Such an extrapolation could conceivably be per-
formed even for a pulse travelling through free
space. Taylor expansion of the wing of a pulse
arriving before the peak could be used to predict
the arrival time of the peak. Thus, genuinely new
information is contained only in points of non-
analyticity (the ‘‘front’’) and these travel with the
front-velocity, which is equal to the speed of light
in vacuum [39,46]. This can be understood as
arising from the fact that discontinuities have
Fourier components at infinite frequency and in a
waveguide these infinite frequency components
would be above cut-off.

Unfortunately, the above argument to define
information as a point of non-analyticity is weak.
For example, consider extrapolation into the fu-
ture by Taylor expansion. Fig. 2 shows a Gaussian

(a) (b)

Fig. 2. (a)Taylor expansion of the Gaussian function expð�t2Þ around t ¼ �2 up to 15th, 30th and 45th order. (b) Gaussian pulse

approximated by a parabolic curve using the Lagrange formula [52] on samples taken at t ¼ �1;�0:6, and )0.2. The hatched area

shows the uncertainty in the parabolic extrapolation that is caused by noise in the three samples of the signal.
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pulse peaking at t ¼ 0 and three Taylor expansions
around t ¼ �2 of 15th, 30th and 45th order. It can
be seen that in order to extrapolate about two
pulse widths into the future and predict the arrival
of the peak, a 30th-order Taylor expansion is re-
quired in this case. The detector at the receiving
end of the communication system will have to take
31 samples of the waveform around t ¼ �2 in
order to perform this 30th-order Taylor expan-
sion. Each of these samples must contain a finite
number of photons (in fact rather more than one
photon) for this procedure to work. In addition,
the sampling will have to be performed quickly
with respect to the pulse width but slowly enough
so that enough photons are detected to obtain
meaningful samples. No matter how carefully the
sampling and extrapolation is performed, the
procedure will always result in a finite probability
of making an error in predicting the future. This
error can be made arbitrarily small by using a
signal pulse with a peak amplitude that ap-
proaches infinity. However, to extrapolate a sig-
nificant amount of time into the future (for
example, ten pulse widths) may require an unfea-
sibly large number of photons in the signal pulse.
Extrapolation into the future only works for ana-
lytic and noiseless signals. The thermal and shot
noise inherent in the production and detection of
electromagnetic waves [44] prohibits extrapolation
into the future by ‘‘significant’’ amounts.

4. Information

It has been established that extrapolation into
the future is of limited value and therefore one
may wonder whether there is a pressing reason to
define information as a point of non-analyticity. Is
a point of non-analyticity in fact physically real-
istic? It is useful in this context, to consider the
definition of information in information theory
[43]. In a practical digital communication system,
bits will be transmitted using bell-shaped laser
pulses. Laser pulses with energy above some cut-
off level will be considered to represent a one-bit,
ones with energy below the cut-off as a zero-bit.
However, because the pulses represent an analogue
continuous signal, this does not necessarily mean

that these pulses contain an amount of informa-
tion exactly equal to one bit. Consider a laser pulse
with a constant level of Gaussian noise. (At the
most fundamental level, every degree of freedom
has thermal noise with an average energy pro-
portional to kBT [44]. Based on the central limit
theorem, [53] it will be assumed here that thermal
noise is a Gaussian stochastic process. See below.)

To represent a continuous signal faithfully, it
has to be sampled at different points in time. Ac-
cording to the sampling theorem, [54] in order to
obtain a faithful representation of the signal it has
to be sampled at a rate twice its bandwidth 2W .
The problem of defining the bandwidth in this
context will be discussed in a moment. The re-
quired accuracy of each sample is determined by
the amount of noise present. Thus, if the signal
strength (for example, the electric field strength) is
es and the standard deviation of the noise is en, the
total rate of information transfer is given by [54]
2W log2 ðes=enÞ expressed in units of bits per sec-
ond. Expressed in terms of signal power ps and
noise power pn (variance), this is W log2 ðps=pnÞ.

What is the bandwidth of a continuous signal?
Consider a Gaussian pulse in the time domain and
its Fourier transform (see Fig. 3), which is again a
Gaussian in the frequency domain. It could be
argued that such a pulse has an infinite bandwidth
as the Gaussian spectrum falls off exponentially
towards infinite frequency. However, this is not a
useful definition of bandwidth since the noise
power spectrum also depends on the sampling
rate. For example, in the case of Gaussian noise,
the noise power is related to the sampling rate by
pnðW Þ /

ffiffiffiffiffi
W

p
. Therefore, in the case of a practical

digital-communication system using clock-shaped
laser pulses representing 0’s and 1’s, the detector
sampling rate will be set approximately equal to
the bit rate. For this choice of sampling rate, the
signal-to-noise ratio is maximised, the bit-error
rate minimised and the detected information con-
tent is one bit per pulse.

A result of the above definition of the rate of
information transfer is that a continuous signal
containing a point of non-analyticity requires in-
finite channel capacity to be transmitted faithfully.
The reason is that to define a discontinuity in the
time domain requires a well-defined spectrum to
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infinite frequency ðW ! 1Þ. Of course, nearly all
analytic pulse shapes require infinite channel
capacity. However, in the real world, signals are
associated with a finite amount of noise limiting
the required sampling bandwidth. Thus, any defi-
nition of information has to take into account this
noise. As a result, an investigation into whether
information can travel superluminally also has to
take into account noise. Defining information in
terms of analytical waveforms or points of non-
analyticity is physically unrealistic.

5. Points of non-analyticity

Before continuing, the properties of points of
non-analyticity will be considered in some more
detail. Points of non-analyticity come in various
flavours with different properties, ordered as: The
Dirac delta function, the Heaviside step function, a
step in the first derivative, second derivative, etc.
The functions in this list are related by integrals.
The Heaviside step function is

hðtÞ ¼
Z t

�1
dðsÞds; ð8Þ

the integral of the Heaviside step function is a step
in the derivative, etc. To find the Fourier trans-

forms of these discontinuities, the convolution
theorem can be used to find

F
Z t

�1
f ðsÞds

� �
¼ ~ff ðxÞ½pdðxÞ � ix�1
: ð9Þ

The Heaviside step function (or any of its inte-
grals) is not a realistic signal as it contains infinite
energy. Any realistic signal has to fall off to zero
for jtj ! 1, which will modify the Fourier trans-
form of Eq. (9) for frequencies close to x ¼ 0. Eq.
(9) does show, however, that the spectrum of any
discontinuity will fall off as x�n for jxj ! 1,
where n is the order of the discontinuity ðn ¼ 0 for
the Dirac delta function, n ¼ 1 for the Heaviside
step function, etc.). The properties of discontinu-
ities lead to a (well known) problem. Consider, for
example, a single-sided exponential pulse with
carrier frequency x0, which has finite energy.

EðtÞ ¼ hðtÞ expð�ix0t � ctÞ: ð10Þ

Its Fourier transform is given by

~EEðxÞ ¼
Z

EðtÞeþixt dt ¼ ð�i½x0 � x
 � cÞ�1: ð11Þ

One would like to calculate the width of the pulse
in the time domain and the width of its spectrum.
There are many equally valid definitions of width
[44] but here the statistical variance or twice the

(a) (b)

Fig. 3. (a) A Gaussian pulse, 50 expð�X2t2=4 log 2Þ with X ¼ 2p=5 THz, sampled every 2 fs with a Gaussian noise component with

pn ¼ 1. Also shown are the same data averaged 10 240 times and shifted up by 10 units for clarity. (b) Fourier transform of the pulses

shown in (a).W is the bandwidth of the original signal and Waveraged that of the averaged signal. The bandwidth of the averaged signal is

reduced by about a factor of two. However, the noise level (as seen on a logarithmic scale) is reduced by about 100 times in the

averaged signal. Therefore, an optimum signal-to-noise ratio is achieved when the signal is sampled at a rate equal to the rate at which

pulses are sent.
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standard deviation of the intensity-distribution
function of the electromagnetic field will be used as
the definition of width. Thus, the width of the
single-sided exponential pulse is

ht2i ¼
Z

jEðtÞj2t2 dt ¼ ð4c3Þ�1; ð12Þ

which is finite but its spectral width

hx2i ¼
Z

j ~EEðxÞj2x2 dx ð13Þ

is infinite. An infinite spectral width is nothing to
be particularly worried about; it simply means that
the spectrum of the pulse is delocalised. Even if the
spectral width is finite, the spectrum could still
extend to infinite frequency (which is the case, for
example, with a Gaussian pulse). The problem of
infinite spectral width will disappear if one chooses
a signal pulse that only has a discontinuity in any
of its derivatives. For example, [16]

EðtÞ ¼ h
1

2
s

�
� jtj

�
expð�ix0tÞ cosðpt=sÞ; ð14Þ

which is clock shaped within the interval ð�s=2;
s=2Þ, has discontinuities in its first derivative at
t ¼ �s. The power spectrum of this pulse therefore
falls off as x�4 and its spectral width hx2i is finite.
Of course, the higher moments of the spectral
distribution are still infinite.

There is no law of physics stating that all the
moments of a (physically realistic) probability
distribution function have to be finite. The
Schr€oodinger equation, Newton’s equation and the
Maxwell equations have valid solutions containing
points of non-analyticity in the time domain or the
frequency domain. This does not necessarily imply
that points of non-analyticity do in fact occur in
nature. Points of non-analyticity give rise to mo-
ments of the conjugate distribution function with
infinite value. This is the reason that an infinite
channel capacity is required to transmit them.

In a number of papers, [38,41,42] it has been
argued that information can be transmitted su-
perluminally using ‘‘bandwidth-limited signals,’’
that is, signals that have their entire spectrum be-
low the cut-off of a waveguide. To investigate the
physical reality of such a spectrum, one may con-
sider a pulse spectrum (a) with an amplitude

tending to zero as the cut-off is approached, (b)
with an amplitude that is zero above the cut-off
and (c) without discontinuities in the amplitude at
the cut-off. An example of such a spectrum is

~EEðxÞ ¼ h
1

2
X

�
� jxj

�
cosðpx=XÞ; ð15Þ

where X is the cut-off frequency of the signal
spectrum, which could be chosen such that it is
below the cut-off frequency of the waveguide. Its
Fourier transform is given by

EðtÞ ¼ 1

2p

Z
~EEðxÞe�ixt dx ¼

X cosð1
2
XtÞ

p2 � X2t2
: ð16Þ

One can again calculate the width of the pulse and
its spectrum using the definition in terms of the
statistical variance. For the cos-pulse, these vari-
ances are given by

ht2i ¼
Z

jEðtÞj2t2 dt ¼ p2=X2;

hx2i ¼
Z

j ~EEðxÞj2x2 dx ¼ ðp2 � 6Þ
12p2

X2: ð17Þ

It can be seen that both the temporal width and
the spectral width are finite for this type of pulse.
However, the higher-order moments of the tem-
poral distribution function are infinite implying
that the cos-pulse is delocalised in the time do-
main. Therefore, in order to produce a strictly
bandwidth-limited pulse such as that in Eq. (15),
the temporal signal has to be controlled from
t ¼ �1 to t ¼ þ1. This is impossible, if only
because of the finite age of the universe. More
practically, the experimenter presumably switches
the equipment off at the end of a (long) day, which
will limit the duration over which the pulse can be
defined and will broaden the spectrum. Therefore,
inevitably, the pulse spectrum will bleed into the
region above the cut-off frequency. A bandwidth-
limited spectrum is as physically unrealistic as a
point of non-analyticity in the time domain.

6. What is information and can it go faster than the

speed of light or what?

At first sight, it might appear that the concept
of information is rather arbitrary and depends on
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an agreement on what constitutes information.
However, independent of this arbitrary agreement,
every communication system based on electro-
magnetic waves must use a receiver detecting
photons. One ‘‘bit’’ of information is received
when the detector has received a sufficient number
of photons to be sufficiently sure that an on-bit
rather than an off-bit was received. In other words,
information may be defined as a pulse (or some
other shape) that a detector can distinguish from
noise. This does not mean that information is de-
fined simply by the peak of a pulse: The detector
should be able to distinguish between on and off
bits with an acceptable signal-to-noise ratio, which
requires a finite amount of averaging time and a
finite number ðP1Þ of photons. The detector has
only one shot at detecting a bit and cannot
perform an ensemble average to improve the
signal-to-noise ratio. This implies that any com-
munication system has a finite bit-error rate. It
also implies that any signals below the noise level
of the communication system might as well not
exist. To investigate superluminal propagation of
information (or lack thereof), one may consider
any pulse shape as long as a noise model is in-
corporated. When noise is included, it will be
found that even signals that have infinite moments
(in the time or frequency domain) can be described
without problems.

Appendix A describes in detail how propaga-
tion of electromagnetic pulses through a wave-
guide has been calculated. These calculations
include the effects of phase shifts occurring at the
boundaries and multiple reflections inside the
waveguide. Fig. 4 shows some of the simulation
results. For example, Fig. 4(a) shows the time-de-
pendent intensity of Gaussian pulses propagated
through waveguides with increasing lengths re-
placing equivalent amounts of free space. It can be
seen that the peak of the Gaussian pulse propa-
gates through the waveguide with nearly infinite
speed. The centroid delay (average arrival time of
the energy) also indicates a nearly infinite speed.
The field and its Fourier transform are given by

EðtÞ ¼ expf�t2=2r2g;

~EEðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2pr2

p
exp

�
� 1

2
x2r2

�
; ð18Þ

which have variances ht2i ¼ r2=2 and hx2i ¼
1=ð2r2Þ. One might arbitrarily [44] define the
pulse width by twice the standard deviation
Dt ¼ 2ht2i1=2 ¼ 21=2r and the spectral width by
twice the spectral standard deviation Dx ¼
2hx2i1=2 ¼ 21=2=r. Note that the Heisenberg ener-
gy-time uncertainty relation ðDE � DtP 1

2
�hÞ relates

standard deviations [55]. For the longer wave-
guides, the advance of the pulse (as measured by
the centroid delay) is more than a pulse width (as
defined above). This superluminal advance comes
at a price: The amplitude of the transmitted wave
is strongly attenuated. A Gaussian pulse has a
continuous spectrum extending to infinite fre-
quency. Part of the spectrum will therefore extend
above the cut-off frequency of the waveguide.
Since the non-evanescent waves are not attenu-
ated, for very long waveguides the transmitted
pulse will be dominated by non-evanescent com-
ponents. Fig. 4(b) shows the time-dependent
intensity of a Gaussian pulse propagated through
a waveguide with such a length that the non-
evanescent component of the pulse begins to
dominate the evanescent component. In that case,
the pulse develops a trailing component. Fig. 4(c)
shows the propagation of a cos-pulse (Eq. 16) with
a pulse width chosen such that its entire spectrum
is below the cut-off frequency of the waveguide. In
that case, the entire pulse is evanescent and could
conceivably be propagated through waveguides of
arbitrary length. Again, it can be seen from the
calculated centroid delays that the energy in the
pulse travels through the waveguide at infinite
speed.

The simulations shown in Fig. 4 are of analyt-
ical functions and do not include noise. Fig. 5
shows a simulation of a Gaussian pulse with noise.
The noise has been added to the field, has a
Gaussian distribution with standard deviation r
(in the field), and is uncorrelated (white spectrum).
The simulation shows that adding noise has little
effect except that, as the transmitted pulse is at-
tenuated, the signal-to-noise ratio in the trans-
mitted pulse becomes smaller as the waveguide
becomes longer. According to the definition of
information as log2 ðps=pnÞ, attenuation of the
signal implies loss of information. If the waveguide
is chosen long enough, the attenuation will be so
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severe that the peak of the pulse becomes lower
than the noise level. At that point, all information
is lost. Therefore, if one would like to achieve a
certain superluminal advance (by choosing a
waveguide with a certain length), one has to
choose the energy (and therefore peak amplitude)
of the signal pulse such that after traversal of the

waveguide, there is sufficient energy left for the
detector to detect the signal with sufficient signal-
to-noise. In the example shown in Fig. 5, the noise
level has been set to rfield ¼ 10�6. This means that
if the peak amplitude of the input pulse is unity,
the pulse can suffer an attenuation of 106 in the
waveguide before all information is lost. However,

(a) (b)

(c)

Fig. 4. Simulated propagation of two types of pulses through waveguides of various lengths. (a) Propagation of a Gaussian pulse

expð�ðt=2psÞ2Þ with width Dt ¼ 2 ps through waveguides of length L ¼ 0, 0.5, 1.0 and 1.5 mm and diameter d ¼ 0:175 mm (cut-off

frequency 1 THz). The crosses indicate the expected arrival time of the pulse if it had travelled at infinite speed through the waveguide

and the centroid delay time calculated from the simulated pulse shapes. (b) Same as (a) except for shorter pulse width Dt ¼ 1 ps. (c)

Propagation of a cos-pulse (Eq. 16) with X=2p ¼ 1 THz and pulse width Dt ¼ 1 ps through waveguides with L ¼ 0 and 0.5 mm, and

d ¼ 0:175 mm.
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this also implies that the input pulse must be well
defined over a large time interval. The Gaussian
input pulse in Fig. 5 has an intensity greater than
10�6 in the time interval t ¼ �7:5 ps. The super-
luminal advance made by propagating through
the waveguide is only 1.3 ps (as measured by the
centroid delay), which is much smaller than the
interval over which the pulse was defined. As can
be seen in Fig. 4(c), this effect is even more pro-
nounced if the Gaussian pulse is replaced by a cos-
pulse. In Fig. 4(c), the superluminal advance is
1.33 ps with a power loss of 6:67� 10�10. Defining
the input cos-pulse down to the 6:67� 10�10 level,
requires a time interval of t ¼ �98 ps.

In all the examples discussed here, the superlu-
minal advance is smaller than the time interval over
which the input pulse has to be defined. One might
say that in these examples superluminal exchange
of information does take place. However, it is not a

useful form of superluminal information exchange.
It is equally valid to say that in these examples no
superluminal exchange of information has taken
place because the information is spread out over a
time interval that is larger than the advance. Worse
yet, superluminal propagation is seen to be ac-
companied by loss of information. The only situa-
tion in which one might say that useful superluminal
information exchange has taken place is if the su-
perluminal advance is larger than the interval over
which the input pulse is defined.

Fig. 5 also shows a simulation of a Gaussian
input pulse chopped off at the 10�6 level, intro-
ducing two points of non-analyticity in the field
amplitude. As expected, [46] these points of non-
analyticity are transmitted by the waveguide at
exactly the speed of light in vacuum because the
waveguide response is causal. Since the waveguide
is not an amplifier (and cannot be at all frequen-
cies [49]), the amplitudes of the transmitted dis-
continuities are the same as those at the input.
Therefore, the transmitted chopped-off pulse re-
produces exactly the transmitted noisy pulse
wherever the field strength is larger than the noise
level r. This is not surprising: It is meaningless to
speak of the ‘‘shape of the pulse below the noise
level.’’ Information is only present if it can be
measured.

This can be expressed mathematically and
generalised to any causal system. If SinðtÞ is a signal
pulse that does not include noise then if this pulse
is transmitted by a causal system, the output signal
is given by

SoutðtÞ ¼
Z 1

z=c
ds Sinðt � sÞrðs � z=cÞ: ð19Þ

In this case, it is difficult (if not impossible) to
determine whether useful (as defined earlier) su-
perluminal signal exchange is possible or not.
However, any physically realistic signalling device
introduces thermal noise [44]. If the signalling de-
vice is a blackbody radiator emitting linearly po-
larised radiation, 2 it can be shown [56] that the

2 It is possible to generalise to unpolarised blackbody

radiation but this would be tedious and add little to the

argument.

Fig. 5. Computer simulation of a Gaussian pulse expð�ðt=
2psÞ2Þ travelling through a waveguide. The spatial z-coordinate

runs from )20 to 20 mm and has been divided into a number of

steps. The simulation time coordinate runs from �Dz=c to

þDz=cðDz ¼ 40 mm, hence, Dt ¼ �133:4 ps) and has been di-

vided into 8192 steps for (a) and (b) (dt ¼ 16:2 fs) and 65536

steps for (c) (dt ¼ 2:0 fs). The waveguide starts at x ¼ 0, has a

length of 0.5 mm and a diameter of 175 lm (cut-off frequency 1

THz). (a) Gaussian pulse chopped off at the 10�6 level and

propagated through air. (b) Gaussian pulse with Gaussian noise

with r ¼ 10�6 propagated through the waveguide. (c) Pulse

shown in (a) propagated through the waveguide.
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electric field amplitude is a Gaussian random
process with variance r2 / �hx½expð�hx=kBT Þ � 1
�1.
Therefore, the output signal of a physically real-
istic system is

SoutðtÞ þNoutðtÞ

¼
Z 1

z=c
ds ½Sinðt� sÞ þNinðt� s;rÞ
rðs� z=cÞ; ð20Þ

where Ninðt; rÞ is the Gaussian random process. As
pointed out above, the signal detector cannot
perform an ensemble average and therefore cannot
recover SoutðtÞ without noise. Thus, from the point
of view of information content, this expression is
identical to the expression

Schoppedout ðtÞ þNoutðtÞ

¼
Z 1

z=c
ds ½f̂f ðrÞSinðt� sÞ þNinðt� s;rÞ
rðs� z=cÞ;

ð21Þ

where f̂f ðrÞ is an operator returning zero if the
function following it is below the value r. From
Eq. (21), it can be seen that the output signal can
never have a value outside the interval defined by
the two points of non-analyticity introduced by
the f̂f ðrÞ operator. SoutðtÞ only differs from
Schoppedout ðtÞ when SoutðtÞ is below the noise level and
therefore fundamentally unmeasurable. ‘‘Unmea-
surable’’ here means that the bit-error-rate is
50%, i.e., the receiver randomly registers zero or
one bits. This proves that useful superluminal
exchange of information is strictly impossible.
The form of the response function rðtÞ does not
enter into these considerations and therefore the
conclusions are general. They also apply if the
system amplifies [29–32] the signal rather than
attenuating it. For the same reason it is not
possible to obtain superluminal transfer of in-
formation by filtering out non-evanescent com-
ponents of the signal if the filter is causal.
Superluminal propagation of information is only
possible by distorting the signal within the inter-
val of definition. Thus, the maximum possible
temporal advance is equal to the amount of time
spent by the transmitter producing the signal in
the first place. It is for this reason that causal
paradoxes are avoided.

7. Conclusion

In the proof in the previous section, fronts
where only introduced as a mathematical device.
No transmitter has in fact to produce a front nor
does any channel have to transmit a front. The
mathematical front, buried in the noise and
therefore fundamentally unmeasurable, is only
used to prove that (a) information is spread out
over a certain temporal interval of definition and
(b) information cannot escape from this interval.
In addition, it was found that the information
content of a signal tends to reduce (or at most stay
the same) during superluminal propagation, which
is in essence the second law of thermodynamics
[44]. As a result, useful superluminal transfer of
information is strictly prohibited.

Up to this point, only information contained in
a single pulse has been considered but an extension
to pulse trains is obvious. The only important
difference is that non-evanescent components of
the signal are much more important in the case of
pulse trains. Any non-evanescent component will
travel with at most the speed of light in vacuum,
will not be attenuated, and may therefore cause a
reduction of the signal-to-noise ratio. In all ex-
perimental ‘‘demonstrations’’ of superluminal
communication so far, [42] the temporal advance
made has always been less than the inverse band-
width of the signal. A back-of-the-envelope cal-
culation shows [25] that as the superluminal
advance becomes larger than the inverse band-
width of the signal, non-evanescent components of
the signal begin to dominate the evanescent ones
resulting in a dramatic reduction of the signal-to-
noise ratio for detecting pulse trains.

It has been argued previously [38,40–42] that,
because the energy of a signal pulse is finite, any
realistic signal must be bandwidth limited and
therefore that it should be possible to construct a
signal pulse that is entirely evanescent. Such a sig-
nal pulse should then result in the superluminal
exchange of information and causal paradoxes.
However, a strictly bandwidth limited pulse, e.g., a
pulse that only has frequency components below
the critical frequency of a waveguide, has an infinite
extend in the time domain. This means that the
information in this pulse is also delocalised over
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time. As the signalling system has to be switched on
and off, the signal pulse will inevitably become lo-
calised in time even if the switching process is
gradual. In addition, the energy of the signal pulse
may be finite on average; however, it will fluctuate
from shot to shot. This means there is a finite (al-
though extremely small) probability for any sig-
nalling device to emit, for example, a gamma-ray
photon. Frequency limitation is therefore not ‘‘a
fundamental property of physical signals.’’

This paper has concentrated on the properties
of information contained in evanescent electro-
magnetic waves. One may speculate that the same
arguments may be applied to quantum mechanics,
i.e., the wavefunctions of particles with non-zero
rest mass. One might consider the notion that the
only particles of interest are those that will be
measured at some point in time. It seems that a
measurement automatically implies the interaction
with a thermal heat bath, which will result in the
loss of information about that particle and an in-
crease in the entropy [44].

In this paper, only linear optics has been con-
sidered in detail. However, it can be shown [57]
that the principle of causality can be generalised to
non-linear optics. This is not surprising as the
Heisenberg equation of motion for a time-depen-
dent operator has (local) causality effectively build
in. Therefore, all the considerations regarding su-
perluminal information transfer also apply to non-
linear optics.
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Appendix A. Waveguide Propagation

The waveguide-propagation equations for an
unended cylindrical waveguide have been derived

in detail in many other places. The derivation re-
lies on the assumption that the waveguide walls are
perfectly conducting in order that the field van-
ishes on the surface. The propagating fields are
then identified by the number of nodes in the ra-
dial and the tangential direction. When waves
propagate over a certain distance through the
waveguide, they will accumulate phase, which for
TE-modes is given by [58]

uðxÞ ¼ xcLc�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx=xcÞ2 � 1

q
;xc ¼ 2xcd�1; ð22Þ

where xc is the cut-off frequency, d is the wave-
guide diameter and L its length. For the lowest
order TE11 mode, the parameter x has the value
1.841 [58]. All other modes have a cut-off fre-
quency higher than the TE11 mode. Above the cut-
off frequency, the transmission is unity (u is real)
and the waveguide is dispersive. Below cut-off,
transmission is less than unity (u is imaginary) and
the accumulated (real) phase is zero. The (effective)
refractive index derived from Eq. (22) is

nðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

c=x
2

q
: ð23Þ

As the phase delay is Re u=c, the phase velocity
tends to infinity as cut-off is approached. The
group delay derived from Eq. (22) is

sgroup ¼ ouðxÞ=ox ¼ xLc�1ðx2 � x2
cÞ

�1
2

¼ L2

c2
x

uðxÞ ; ð24Þ

which shows that as the cut-off frequency is ap-
proached, the group velocity tends to zero. Below
cut-off, however, the group delay is imaginary,
which implies an infinite (real) group velocity. The
group-velocity dispersion [45] (GVD) is given by

GVD ¼ o2uðxÞ=ox2 ¼ � L4

c4
x2

c

u3ðxÞ ; ð25Þ

which is also imaginary below the cut-off fre-
quency. It can be shown that around zero fre-
quency, this GVD gives rise to a broadening of the
pulse spectrum and a narrowing of the pulse
width.It can be shown that the waveguide propa-
gation equation given here is causal. The accu-
mulated phase in an unended waveguide given by
Eq. (22) corresponds to the dielectric function
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eðxÞ ¼ ð1� x2
c=x

2Þ: ð26Þ
It can be seen that the dielectric function is real for
all frequencies and becomes negative below the
cut-off frequency. Using the Kramers–Kronig re-
lations, one can calculate the imaginary part by
contour integration (P is the principal part): [46]

e00 ¼ 1

p
P
Z

x2
c=x

2

x� x
dx ¼ x2

c

p
P
Z

1

x2ðx� xÞ dx

¼ x2
c

p
2pi

1=2

x2

 
þ �1=2
ð�xÞ2

!
¼ 0; ð27Þ

which proves that the dielectric function as given
in Eq. (26) is causal.

The expressions for waveguide propagation gi-
ven above do not include the effect of coupling the
electromagnetic waves into and out of the wave-
guide. This approximation is only valid if the
waveguide is long enough that one may ignore the
effects of multiple reflections inside the waveguide.
From the expression for the accumulated phase,
Eq. (22), one can derive the effective index as
nðxÞ ¼ cu=xL. If the waveguide is embedded in
air, the interfaces at the waveguide entrance and
exit will act as mirrors. Evanescent waves cannot
interfere but each reflection off an interface results

in a phase shift and a corresponding time shift. As
these shifts accumulate on multiple reflections in-
side the waveguide, this may lead to a significant
change in the properties of the transmitted field.
Using Fresnel coefficients [59] and including the
effects of multiple reflections, one can derive the
frequency-dependent transmission function using
the geometric series as

~TT ðxÞ ¼ ~aaðxÞeikL

1� ~bbðxÞei2kL
; ð28Þ

where

~aaðxÞ ¼ 4nðxÞ
ð1þ nðxÞÞ2

; ~bbðxÞ ¼ ð1� nðxÞÞ2

ð1þ nðxÞÞ2
; ð29Þ

and k ¼ xnðxÞ=c is the wavenumber in the wave-
guide.

The time-response function is given by the
Fourier transform of Eq. (8), which has infinitely
many poles in the complex-frequency plane given
by the equation ~bbðxÞ expði2kLÞ ¼ 1. In order to
prove that the response is causal, one has to show
that all poles are in the lower-half complex-fre-
quency plane [46,49]. It appears that an analytical
expression for the poles cannot be found. A nu-
merical search (see Fig. 6) only yielded poles in the
lower-half frequency plane.

Fig. 6. Contour plot of log10 jT ðxÞj (Eq. 28) for xc ¼ c ¼ L ¼ 1 showing the beginning of an infinite series of poles in the lower-half

complex-frequency plane.
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The equations given above allow one to calcu-
late the transmitted electromagnetic field with or
without the effects of coupling the radiation in an
out of the waveguide. In order to calculate the field
distribution inside the waveguide, one has to solve
the Maxwell wave equation directly. Consider an
electromagnetic field impinging on a waveguide
suspended in a vacuum. If this field is written as:

Eðz;xÞ ¼ Wðz;xÞ expð�ixtÞ; ð30Þ
the scalar component is governed by the Helm-
holtz wave equation [2]

o2Wðz;xÞ
oz2

¼ � xnðxÞ
c

� �2

Wðz;xÞ

� �k2Wðz;xÞ: ð31Þ

For a cylindrical metal waveguide, the TE mode
wavenumber is [58]

k ¼ c�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x2

c

q
ð32Þ

with the critical frequency given by Eq. (22). There
are three regions to be considered (see Fig. 7), 1: in
front of the waveguide, 2: inside the waveguide
and 3: beyond the waveguide. The solutions to the
wave equation can be written as:

W1ðz;xÞ ¼ eik1z þ Re�ik1z;

W2ðz;xÞ ¼ Aeik2z þ Be�ik2z;

W3ðz;xÞ ¼ T eik1ðz�dÞ:

8><
>: ð33Þ

Note that the fields in the above equation are de-
fined with the origin at the first interface. The
phase factor in the third term ðe�ik1dÞ makes that
propagation in the gap is included in the T term.

With the E-field s-polarised and assuming the
magnetic permeability to be unity everywhere,
both field and the spatial derivative of the field are
continuous across the boundaries [2]. Therefore, it
follows:

W1ð0;xÞ ¼ W2ð0;xÞ;W2ðd;xÞ ¼ W3ðd;xÞ
W0

1ð0;xÞ ¼ W0
2ð0;xÞ;W0

2ðd;xÞ ¼ W0
3ðd;xÞ

�
ð34Þ

Solving this set of linear equations in the param-
eters A, B, R, and T, it is found ðn ¼ ck=xÞ:

T ¼ aT e
idk2

1� be2idk2
; aT ¼ 4k1k2

ðk1 þ k2Þ2
; ð35Þ

R ¼ aRð1� e2idk2Þ
1� be2idk2

; aR ¼ ðk21 � k22Þ
ðk1 þ k2Þ2

; ð36Þ

A ¼ aA

1� be2idk2
; aA ¼ 2k1ðk1 þ k2Þ

ðk1 þ k2Þ2
; ð37Þ

B ¼ aBe
2idk2

1� be2idk2
; aB ¼ �2k1ðk1 � k2Þ

ðk1 þ k2Þ2
; ð38Þ

with

b ¼ ðk1 � k2Þ2

ðk1 þ k2Þ2
: ð39Þ

The result for the transmission and reflection is
identical to that obtained using Fresnel coefficients
(Eq. 28).

Consider a pulse in the time domain:

Eðz; tÞ ¼ F ðsÞe�ix0s; s ¼ t � zn=c: ð40Þ
Its Fourier transform is:Z

Eðz; tÞeþixt dt ¼ ~FF ðx � x0Þeiznx=c

¼ ~FF ðx � x0Þeikz: ð41Þ

Therefore, to calculate what will happen to a pulse
travelling through a barrier, one can take the so-
lution Eq. (33) and multiply it with ~FF ðx � x0Þe�ixt

and integrate (sum) over all frequency components
of the pulse, i.e.:

Eðz; tÞ ¼ 1

2p

Z
~FF ðx � x0ÞWðz;xÞe�ixt dx: ð42Þ

This method has been used to do all of the time-
domain simulations in this paper, where the Fou-
rier transforms were performed using FFT [52].

Fig. 7. Schematic diagram of a waveguide and the incoming

and outgoing waves.
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